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Abstract. The effect of the preservation of the topology of the entanglement in systems of polymer
loops is investigated. We define a simple two-state linking invariant for a pair of loop polymer
chains and show its relationship to the familiar Gaussian linking number. The probability of linking
two disjoint sets chosen from a dense melt of closed-loop chains is determined. We discuss the
form of the resulting probability and the approximations necessary in obtaining it.

1. Introduction

The intuitive physical picture concerning the topology of a system of polymers is understood
through the connectivity of the molecules. Each molecule forms an (ideally) unbreakable
line, such that the changes in configuration of the polymer never permit an interruption of the
backbone during any reconfiguration. Therefore, it is required of a formalism incorporating
this, that the dynamical picture with the hard-body interaction amongst the chains and the
concept of the permanently connected chain are implemented together. Dynamically two
long chains can require a long time to switch places, and in certain situations this time
essentially becomes infinite. Such situations are normally dealt with by using the concept
of reptation [1–4]—the idea that each polymer moves along a tube caused by the geometrical
constraints imposed by the remainder of the molecules, where reconfigurations of the system
occur by cooperative motions of the tube and the contained polymer. Where there are loops
permanently embedded by and into the substance, which may, in turn, be interlaced by other
loops, the dynamics are determined by the fact that the mutual escape of loops is impossible.
For the case when there are long free-ended polymers such as tree polymers, structures may
have long ‘branches’ where reptation can only occur by retraction of complete arms and their
subsequent extensions (see e.g. [5,6]) which will greatly extend the time for such a process to
occur and hence the viscosity of such a solution. On short timescales such branches may be
considered as entangled with the remainder of the polymer system.

However, in the case of polymer network structures the mathematics of dynamical or non-
equilibrium treatments becomes too intricate and the necessary simplifications all but remove
the essentials one wishes to include [7, 8]. It would be easier to model entanglement and
hard-core repulsion effects in the light of equilibrium statistical mechanics. Some treatments
of networks do consider excluded volume and the crosslinking, but still compute the results
for phantom molecules (see, e.g. [9,10]). The excluded volume interaction is computed by the
weighting of all configurationsa priori, such that the true topological invariance is lost. (Here
the use of the word ‘topology’ is limited to its geometrical sense as related to the existence
of links of physical knots.) It is requisite to include an additional constraining factor in the
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integrand for the partition function to maintain the invariance of the topology of the whole
network explicitly.

One approach beyond the phantom limit is in the slipping link model of entanglements
(Ball et al [11]). Highly dense knotted regions of one polymer strand which have captured
(during formation) another strand in their midsts are regarded as localizing two strands in
question at a point which is free to slide between crosslinks of the underlying network. The
elastic role of the slipping links is due to the effects of their slipping along the molecules of
the network as this is stretched, and the molecules themselves becoming ever longer due to
their nature as random walks. Other approaches have been made by Rostiashviliet al [12,13]
and a recent review has appeared by Kholodenko and Vilgis [14].

As concerns a general topological approach, two problems are immediately at hand.
Only truly closed loops lead to a true topological invariant, since equilibrium statistical
mechanics does not occupy itself with the timescale of reconfigurations. If the network
formation were modelled by the instantaneous crosslinking of strands in a melt, the difficult
theoretical question would remain as to identify explicitly the loops thus formed even before
the topological implications of such loops can be considered. The problem of timescales may
be addressed by the inclusion or consideration or estimation of effective links, above which
the timescale of retraction and reconfiguration would become experimentally unfeasible or
temporally unrealizable.

In this paper we introduce the concepts of invariance of the topology of polymer systems.
Previously implemented methods of incorporating such invariance to the polymer problem as
well as introducing knots in a general manner have already been mentioned. Subsequent
sections concern themselves with the definition of an intuitively appealing realization of
topological classification. This and related definitions are shown to be true topological
invariants for two-component links. The invariant is then implemented for systems of ring
melts in the annealed case. The quenched cases where such rings can be crosslinked or form
a so-called olympic gel is left to the next paper [15] (referred to as II hereafter), after we have
introduced the necessary concepts here.

The following two subsections introduce invariants. The second section introduces
concepts we require for the calculation of properties due to pairwise, two-state linking
invariance. The final section is devoted to the computation of the probability that two sets
of chosen polymer chain loops chosen from a dense system are entangled. We find that the
result depends upon a parameter expressing the volume fraction occupied by the pairs of rings
and produces intuitive results.

1.1. Topological invariance

The second problem lies in the manner of the precise implementation of these constraints
upon the topology of the network. The order of linking needs to be identified. Self-linking
of any ring represents the lowest; then there are all pairs of links which have pairwise linking
constraints. At third order, situations such as the occurrence of Borromean rings play a role,
where pairwise rings are not entangled, yet a set of more than two loops is inseparable. The
reader is referred to figure 1 for an example of a triplet of such loops.

The methods developed by knot theorists for the classification of links usually rely on the
projection of any knot into a plane such that no two crossings occur above each other in the
projection. The crossings are then individually labelled and polynomial invariants defined for
the various links based upon the orientation of each link and the explicit manner of labelling
these crossings. One of the simplest and the oldest of these polynomial invariants is the
Alexander polynomial of which a description is given by Wiegel [16]. The nature of statistical
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Figure 1. Borromean rings are only
entangled here as a triplet but have
pairwise winding numbers equal to
zero.

Figure 2. The Reidemeister moves relevant to the invariance of pairs of
links. The moves of types I, II and III appear in sequence from left to right.
Invariance under all three types of moves is said to be of ambient isotopy,
while invariance restricted to types II and III is described as regular isotopy.

physics which requires analytical expressions depending on the link constituent paths makes
it unfeasible to implement such ‘mechanical’ procedures of knot classification.

Let an invariant,Ic, describing the topological state for some set of configurations be
found. The set of loops has to stay in exactly those same configurations which do not alterIc,
thus subdividing the system in topological equivalence classes. This does not preclude that
schemes of classification of states of links do not have a unique realization. We write,

constraint= δ(Ireference− Itest). (1.1)

Ic may be any complicated functional depending on the precise paths of all the molecules.
Topological invariants for knots and links of arbitrary order are generally tested under

the Reidemeister moves, expressions of local permitted reconfigurations of knots [17]. The
moves were shown, in a theorem by Reidemeister, to be necessary and sufficient for the
topological equivalence of the two-dimensional projection of the embedding of any knot in
three-dimensional space. The moves are depicted in figure 2. Invariance under moves labelled
I, II and III is described as invariance of ambient isotopy and moves of the types II and III only
as regular isotopy. The invariance means that taking any set of links and subjecting the space
in which they are embedded to an arbitrary continuous and invertible deformation leaves the
topology of the knot invariant. This is a nonlocal property of any such system.

The concepts of formulating the geometry of knots in terms of Hamiltonian and Lagrangian
formalisms is reviewed by Atiyah [18]. The role of gauges in physical situations which require
non-simply connected spaces has been tackled by several authors, and has motivated some of
the analytical expressions used for invariance (see, for example, the treatment of Kleinert for
topological structures in superfluids and other condensed matter systems, [19–21]). Edwards
[22,23] has also shown that the Gauss invariant can be implemented as an interacting magnetic
vector field. Analytic forms of invariants are deducible from Chern–Simons theories [24–26]
which seem the most promising candidates for an optimal and complete theory of topological
classification [27]. Anyon statistics, and Laughlin wavefunctions (e.g. in [28]) have been
employed in attempts at understanding entanglement, in maps to the one-component Coulomb
plasma (Kholodenko [29]).
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Figure 3. A glancing crossing which turns back and a glancing crossing which does indeed cross.
The first is not counted by the invariant (equation (1.3)), while the second is. The usual knot
projections avoid such ambiguous situations.

1.2. Realizations of invariants

Some analytic forms of invariants such as the Gauss and Arf invariants can be given explicitly.
The Gaussian or winding number for pathsr1 andr2 is given by:

4πIGauss[r1, r2] =
∮

1

∮
2

dr1× dr2 · (r1− r2)

|r1− r2|3 . (1.2)

The idea that the number of crossings between any two invariant loops can change only by
a multiple of two (if glancing crossings are not considered) leads to the basis of an invariant†
found by counting the number of intersections between pairs of loops, defined as follows:

t
?[R1,R2]x̂ =

∫ ∞
0+

dτ
∫ L

0
ds
∫ L′

0
ds ′ |x̂ · (Ṙ1(s)× Ṙ2(s

′))|δ(3)(R1(s)−R2(s
′)− x̂τ)

t[R1,R2]x̂ =
∫ ∞

0+
dτ
∫ L

0
ds
∫ L′

0
ds ′ x̂ · (Ṙ1(s)× Ṙ2(s

′))δ(3)(R1(s)−R2(s
′)− x̂τ).

(1.3)

One loop is being ‘pulled’ away from the other to infinity in the direction of thearbitrary
unit vector x̂. Alternately, the loops are being projected onto a plane at infinity and the
number of mutual crossings are counted. For this reason one can callt an extraction invariant.
(Appendix A contains invariance proofs and equivalent formal definitions oft?.) The measure
in the integral ensures that its result is an integer and that simultaneously the cross-product
does not count glancing crossings as those depicted in figure 3 but does those which do indeed
cross the line of the other loop. From the above definition, by making use of basic vector
identities and the even nature of the Dirac delta function, the observation that the expression

t[R1,R2]x̂ = t[R2,R1]−x̂ (1.4)

holds is immediate. If the numbers above are true topological invariants of closed loops their
values should not depend on the choice ofx̂.

It is noted that the odd or even nature of the crossing number as defined by equation (1.3)
is not affected by the removal of the absolute value in the measure. The absence of this will
considerably simplify future statistical mechanical calculations. Henceforth,t (note: omission
of the asterisk) will be regarded as defined without this. The invariant is then

δ?(t[R1,R2]) = t2[R1,R2] = |t[R1,R2] mod 2|. (1.5)

The definition ofδ? is taken to be,

δ? : Z→ {0, 1}
δ?(x) : x 7→ |xmod 2|. (1.6)

† The proof that equation (1.3) defines an invariant modulo two is left to appendix A.
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It is now easy to see how this applies to such situations when viewed three dimensionally
and that the results above is essentially the same as the Gaussian invariant. We present proof in
appendix A. The invariance is definitely broken when the value oft changes from odd to even
(or vice versa) but the invariant does not distinguish from other topological or geometrical
situations. This is the simplest manner of viewing geometricalinequivalenceof two-links by
simply dividing the complete space of possible knottings into two classes. To clarify this point:
let two two-link knots witht1 andt2 be considered. If these integers are both even it is possible
that the knots have the same topology. However, if one is odd and the other even any topological
equivalence is ruled out. A similar argument holds for a complete system description reduced
to pairwise descriptions (the picture in which future considerations will only be made) and as
is the case of the implementation of the Gaussian invariant also. This minimal constraint upon
the system can provide the lowest estimate of physical effect of entanglement invariance in the
replica system. The incorporation of higher numbers of invariance will restrict the free energy
of the system to an ever increasing degree.

It is important to note that the calculation of the linking numberI or of δ? does not detect
all linked states.

2. A system of two rings

What is the probability of two rings being formedδ?-entangled at a specific density in a melt?
When two identical loops of polymer are entangled in the sense ofδ?-invariance one expects
a joint probability distribution of these two rings which differs from the unentangled case.

Constraints which are absolute in the sense that their implementation in a partition function
(for example) means that they multiply the remainder of the system by either a one or a zero
and cannot be treated perturbatively. There is no parameter related to the constraint in itself
which can be treated as small or large with respect to some other quantities, such as is the case
for potentials where these two extrema can often be investigated perturbatively. A sensible
option for the implementation of an absolute constraint is to treat the constraint variationally
or to implement it in an approximate system in which calculations are possible.

Let identical rings of polymer be considered as closed random walks of a given length.
We neglect effects of excluded volume. The two-topological invariant can be implemented by
considering integral arguments of the cosine:

δ?(t) = cos2
(π

2
t

)
(2.1)

= 1
4

∑
c=±1,0,0

exp[+iπct]. (2.2)

The loop structure follows by writing the closed polymer path functions in terms of Rouse [30]
modes,

r(s) = r0√
N

+

√
2

N

∞∑
m=−∞

rm exp

(
2π ims

L

)
. (2.3)

These contain the periodic nature of the molecule, which is in contradistinction to the case of
free ends where expansion occurs in terms of cosmπs/L.

2.1. Collective coordinates

Collective coordinates in the context of entanglements have been introduced by Vilgis and
Brereton [31], where these were defined depending on the Lagrange multipliers for the pairwise
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entanglements. In order to implement replica techniques and to apply the theory to networks,
it would be simpler not to include these in a definition.

For a system ofN closed paths let the new variables

ui (k) =
∫ L

0
ds ṙi (s) exp(+ik · ri (s)) i ∈ {1, . . . , N} (2.4)

be defined. These are the familiar Fourier transformations of the bond-vector density. In terms
of these variables the topological invariant may be expressed by:

t[ri , rj ] = 1

(2π)3

∫
d3k

∫ ∞
0

dτ ui (k)× uj (−k) · p̂e−ik·p̂τ

= 1

V

∑
k 6=0

(∫ ∞
0

dτ e−ik·p̂τ εabcp̂c

)
uia(k)uib(−k). (2.5)

E(k) =
∫ ∞

0
dτ e−ik·p̂τ εabcp̂c. (2.6)

The term in brackets of equation (2.5) will henceforth be denoted byE(k) and plays a crucial
role in the characterization of the invariance. Herep̂ has been chosen as the unit vector
in the direction of the projection. In the case of linking number it is easily found that
E(k) = εabckck−2. After suitable manipulations the relevant parts of an implemented invariant
such ast lead to the same expression as for the Gaussian. This is in accordance with the results
of section 1. We also define:

E9i(k) =
Mi∑
j=1

uj (k) (2.7)

such that

tii ′ = 1

V

∑
k

E9i · E · E9i ′

=
Mi∑
j=1

M̃ ′i∑
j ′=1

tjj ′ . (2.8)

The numberMi is a macroscopically large number such that the central limit theorem may
be applied toE9i . Therefore, the statistical mechanical Hamiltonian in terms of the Gaussian
approximation is suggested. By lettingMi andM̃j represent two subsets of the rings in a
system it is clear that the strength with which the entanglement constraint holds is less strong
in that fewer entanglement events can be distinguished. Nevertheless, the classification of the
entangled state is still rigorous under a complete distribution for the collective variables. This
is a property of the Boolean-type rules for entanglement invariance as treated in the initial
sections.

In the case of the Wiener measure, collective variables such asui and E9i are poorly defined
as the random walk since they are nondifferentiable. However, it is noted that that the above
condition ensures that gradients of the walk are not uncorrelated. Problems of this nature can
be resolved by introducing stiff, or worm-like walks or by regularizing integrals with cut-offs
by noting that the polymer molecules actually consist of a finite number of oriented bonds.
The latter is the approach which will be taken here and it is done with the cut-off. We have the
condition ∫ L

0
ds ṙ(s) = 0. (2.9)

We note that this provides satisfactory results in the view of previous work [22].
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2.2. Further properties

The inclusion of terms such asui × ui is not problematical, as the measure ensures a zero
contribution (i.e. cross-product of a vector with itself) and the integration overτ can be taken
as being from a very small distance, say a molecular diameter, to infinity. We compute the
linking probability for two sets of rings.

The ring-like and chain-like properties restrict the functional forms of variables such as
u(k) and E9(k) may assume. First, this property yields (see Brereton and Vilgis [31,32]),

u(0) = 0 (2.10)

and

k · u(k) = 0. (2.11)

The latter follows from definite integration of∂/∂s exp(+ik · r(s)) over s between zero and
L, and means that the bond-vector density must be divergenceless. There are no ‘sources’
or ‘sinks’ of polymer contour for closed molecules. Such terms are sometimes referred to as
‘gauge-fixing’ in analogy with the Chern–Simons formalisms of knots.

The second condition is that for any suitable open surfaceS, the integral
∫
S
Eϑ · dES = n

yields an integern, and whereEϑ represents the bond-vector density. This expresses the
condition that an integral number of lines pass through any open surface. The analogy here is
established to the formalism of the magnetic field which is divergenceless, and describes an
Abrikosov lattice of superconductivity in which the magnetic flux is quantized. Here vortices
are of the diameter of the polymer. The condition may also be rephrased in such a way that
the entanglement of the field of Gaussian distribution must be an integer for a knot with every
closed loop or path from or to the infinite boundaries of the box.

An additional property is of note, since it may be applied successfully in the quenched
(replica) cases to be discussed later. If the loop described byr(s) were to be subjected to a
transformationT independent ofs or r(s) such that,

R(s) = T · r(s) (2.12)

then the appropriate bond-vector density Fourier component in terms of the originalu would
be,

unew(k) =
∫ L

0
ds T · ṙ(s)eik·T·r(s)

= T · u(T · k). (2.13)

The condition that it forms a closed loop remains unaltered as discussed previously.

3. Annealed case

For the collective variables defined previously it is possible to derive the probability that two
disjoint sets of rings are entangled in a melt of rings for the case of modulo two invariance by
extraction. The Gaussian approximation for the two-ring variables is derived in appendix B.
In addition to the Gaussian approximation the constraints upon theE91 and E92 are imposed
that these be ring-like. The probability distribution then changes from

P E9 [ E91(k), E92(k)] = exp

(
−1

2
Tr ln

1

2π
Aij
)

exp

(
− 1

2

∑
ij

∑
k

E9i(k) · A−1
ij (k) · E9j(k)

)
(3.1)
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whereA−1
ij is the Gaussian approximant, to

P̃ E9 [ E91, E92] = exp

(
−1

2
Tr ln

1

2π
Aij +

1

2
Tr ln

1

2π
k · Aij · k

)
× exp

(
− 1

2

∑
ij

∑
k

E9i(k) · A−1
ij (k) · E9j(k)

)
×
∫

Dφ1Dφ2 exp

(
+ i
∑
k

∑
i

φi(−k)k · E9i(k)
)
. (3.2)

The matrices above are both indexed by the Cartesian coordinates and in the ring labels. Here,
let the probability that the sum of all entanglement numbers between two sets ofN andN−M
rings is odd, be denoted as follows:

p12 =
∫

D E91D E92

{
P̃ E9 × 1

4

∑
{c}

[
exp +iπc

∑
k

E91E E92

]}
δIntNInt. (3.3)

Here δIntNInt represents the constraint that only those contributions in the Gaussian
approximation are retained which produce integral entanglement numbers with the appropriate
normalization. The expression,p12, represents the annealed average of an entanglement, or
the probability that a spontaneously created system of rings would be in a topological state
as described above. A direct evaluation of the term with the mutual entanglements (without
δIntNInt) above would result in a probability,

p12,c ∝ exp[− 1
2 Tr ln(1 +AijEjk)] exp[+1

2 Tr ln k · (A−1
ij + Eij )−1 · k]. (3.4)

The expression above refers only to those cases wherec = ±1, wherec enters the expression
squared. In the following two sections the two constraints are considered separately.

The condition (2.11) causes the determinant of a rank two matrix in Cartesian space to be
computed. Inversion of the matrix between thek can be rather tedious, especially when the
matrix has additional replica labels. Only the transverse components of the matrixAij play
a role as(1− k̂k̂)Aij (1− k̂k̂) is projected since the ring condition requires that the fieldsE9
be transverse. The relevant 2× 2 submatrix can be found by ak-dependent rotation of the
appropriate matrices in the Cartesian space. Let a rotation of the Cartesian coordinates be
defined by:

R(k) =
( sinφ cosφ 0

cosϑ cosφ cosϑ sinφ − sinϑ
sinϑ cosφ sinϑ sinφ cosϑ

)
=
(
k̃1

k̃2

k̃3

)
. (3.5)

The vectors,̃ki are orthonormal where specificallỹk3 = k̂. The anglesϑ andφ represent
the usual angles related to spherical coordinates ofk̂. The functionE9 can now be rewritten
as the sum of the transverse components and the one in the direction ofk: Eψ + k̂ζ . The
ring-condition ensures thatζ is identically zero for allk. Any Gaussian integral over rings is
now two dimensional,∫

exp(− 1
2
E9D E9) =

∫
exp(− 1

2
E9RTRDRTR E9)

=
∫

exp(− 1
2
EψD̄ Eψ) (3.6)

such that only thẽk1 and k̃2 submatrix ofRDRT remains, which is denoted by a bar. The
notationGT represents the transpose of a matrixG. The rotation ensures that any part of the
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tensorD which projects from or into the direction̂k is rotated into the third row or column of
RDRT . In addition it follows that,

Ē(k) =
(

0 k̂ · p̂
−k̂ · p̂ 0

)
E(k) (3.7)

where

E(k) =
∫ ∞

0
dτ e−ik·p̂τ . (3.8)

This is seen from the following derivation:

(RTER)ab =
∑
cde

k̃c;eεcdep̂ek̃b;aE(k)

= k̃a × k̃b · p̂E(k) = εabck̃c · p̂E(k). (3.9)

The properties of the Levi-Civita symbol,εabc, have been used.
Combining the results of appendix B and the equations above and by neglectingδIntNInt

here, leads to the result,

〈e+iπct12〉 = exp

[
−Tr ln det

(
1− π

2c2M(N −M)
V 2

1T Ā1Ā
)]

(3.10)

= exp

[
− 2V

π2

(
6

`L

)3/2 ∫ xc

0
dx x2 ln(1 + c2%2g2(x)x−2)

]
. (3.11)

Here the matrices to which reference is made have already been reduced by the procedure of
rotation. It is found that:

1 = − 2

k · p̂

(
0 k̂ · p̂

−k̂ · p̂ 0

)
(3.12)

and

A(k) = δabf
(
k2`L

6

)
. (3.13)

The derivation off is given in appendix B. The parameter appearing above is given by:

%2 = 8π2M(N −M)V −2

(
`L

3

)3

. (3.14)

Therefore,% expresses the volume fraction occupied by the polymer chains. We expect that
if this parameter is small, spontaneously formed entanglements between rings will be highly
unlikely.

The procedure above has revealed the topological properties as expected. The rotational
transformations and restrictions and the regrouping into terms such as1 have led to an
expression for entanglement which isindependentof the specific choice of direction of
projection and is the same as for the Gaussian linking number. Any other result would have
rendered the approximation and formalism useless.

We define a periodic function by:

2δp(x) = 1 +
∞∑
η=1

2 cosπηx/2. (3.15)

Employing a self-consistent condition upon the two entanglement fields in the system, one
postulates thatE9E E9 ′ must be an integer, where theE9 are computed by the RPA. The
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normalization can then be written as:

N−1 =
〈

1
2

∞∑
η=0

∑
d=±1

exp +iπη dt

〉
(2− δ0η)

=
∞∑
η=0

{exp− 1
2 Tr ln(1 + 4η2%2g2x−2)}[2− δ0η]. (3.16)

The probability becomes:

p12 = N 1

2

∞∑
η=0

∑
d=±1

1

4

∑
{c}

{
exp−1

2
Tr ln

(
1 +

(
ηd +

c

2

)2
4%2g2x−2

)}
[2− δ0η] (3.17)

= 1
2 +N 1

8

∞∑
η=0

{exp− 1
2 Tr ln(1 + (η + 1

2)
24%2g2x−2)

+ exp− 1
2 Tr ln(1 + (η − 1

2)
2%24g2x−2)}[2− δ0η]. (3.18)

From this expression one also sees that were the replacementc → 2c to be made in the
system, the probability would always be equal to one in accordance with the odd/even nature
of the cosine squared test. The replacement would simply entail a multiplication of the
appropriate entanglement number by two making the odd/even test trivial. This is true for
all even replacements. However, as the expression stands above the sums are not directly
computable. In the limit of high densities one can assume that

exp[− 1
2 Tr ln(1 + (η − 1

2)
2%2g2x−2)] ∼ exp[− 1

2 Tr ln(1 + (η)2%2g2x−2)]

∼ small

to first order to give

p12 ∼ 1
2 + 1

2 exp[− 1
2 Tr ln(1 + 4%2g2x−2)] (3.19)

as derived already.

4. Results and discussion

For loops consisting of a finite number of straight-line bonds there is also a corresponding
maximal entanglement number. If one loop hasN bonds and anotherN ′ then the maximum
value of an expression of the type oft is given byN ×N ′/9. This is based on the fact that the
smallest possible loop can be formed by three straight bonds in triangular arrangement.

The finite number of bonds also plays a role whenk2 in expression such as equation (B12)
is large, which should then be rewritten in its discrete form

S =
∑
ij

`

3L
1(δij − 1) exp

[
−`Lk2/6

(
i − j
N
− (i − j)

2

N 2

)]
. (4.1)

The sum reduces to the form of
∑ζ

m=0 a
m2

which can be approximated by its largest term.
WritingN = L/`c this is the expression forA(k) becomes extremely small whenk2 > 6/``c
with width proportional to 6N

`Lk2 .
Arguments as to the finite number of bonds in any loop molecule lead to the regularization

of integrals by a cut-off

k2
c = 6x2

c /`L (4.2)

and

k2 < k2
c = 6/``c. (4.3)
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That such a cut-off exists can be explained by the fact that the polymer ring consists of a finite
number of end-joined linear segments, each of which can maximally only have one crossing
with any other segment in a specific projection. The maximum number of crossings is equal
toM(N −M)L2/9`2. The integral of equation (3.11) is performed in appendix C. The final
result for the probability of an odd number of entanglements in a melt of rings subdivided into
two macroscopically large sets is:

p12 = 1

2
− 1

2
exp

{
−2V

π2

(
6

`L

)3/2 [
xc%

2

2
− %

2

12
+
π%3

12

]}
(4.4)

to the highest order in% andkc.
The result is valid when the Gaussian approximation holds and where the integrals are

still dominated for the cut-off 1� % � kc. For%2 larger than(k2
c /6)`L the contribution in

the exponent diverges giving, as is expected, a value forp12 of one half. It can be expected
for high densities that in half the cases there is an odd number of entanglements between two
macroscopically large disjoint sets. For the opposite limit in the densityp12 ' 0, which is
also in accordance with expectations.

In our simple approximative scheme we see that if the concentration of loops remains
constant, the effect of increasing the chain lengths causesp12 to tend to its maximal value. In
equation (4.4) it is observed that the behaviour of the probability of entanglement is determined
by the concentration of the number of segments squared. This is in accordance with the fact
that the we have investigated a single pair of sets undernonlocalconstraints.

In this paper it is shown that a simple two-state invariant can be defined which is related
to the Gauss linking number. The simple annealed case of linking of rings in a dense melt
has been investigated, and it has been demonstrated that this simple even/odd entanglement
number test is applicable under the random phase approximation (RPA) used for the melt of
rings. The results agree with physical intuition. They can now be used to study the effect of
entanglements on the properties of gels [15].

Acknowledgments

The funding of KKMN for this work by the Emanuel Bradlow Foundation and the Committee
of University Principals and Vice-Chancellors in the UK and St John’s College, Cambridge,
who also provided financial assistance is most gratefully acknowledged. SFE acknowledges
an emeritus fellowship from the Leverhulme Foundation.

Appendix A. Invariance proofs

The arguments leading to the invariants of two topological classes as expressed in equation (1.3)
contain more detail as to classification of knots than under the modulo two test generally used
hereafter. In fact there must be as many distinct knotted states described by the invariant
without the absolute value restriction of the integrand as by the Gaussian integral. The value
of t (without modulo two restrictions) is shown to be closely related to the winding number.
It emerges from the intuitive geometrical and projective ideas concerning knots which the
counting invariant is designed to recognize.

Only the case of two-component links and no self-linking will be considered to argue that
t is an invariant. It suffices, therefore, to show invariance under any local reconfigurations of
the knots under Reidemeister moves of types II and III. Type I moves apply only to the case of
self-knotting which is ignored here. Mathematical uncertainties emerge for the type I case due
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Figure A1. The signs of the crossings for directed knots for extraction direction into the plane
of the page. The left-hand situation corresponds to a signε = +1 and the other to the negative
case. The sense of rotation from the upper arrow to the lower one, in a right-handed screw manner,
establishes the sign.

to the problem of the framing of knots (where certain gauges or procedures have to be chosen
for a knot invariant to have meaning).

Let two loops of an ordered linkL be denoted byα andβ, such that one writesL(α, β).
The set of crossings, in some projection, which does not matter here, is written asα u β. The
linking number is defined by,

lk[L] = lk(α, β) = 1
2

∑
p∈αuβ

ε(p). (A1)

Hereε(p) represents the sign of the crossing, which is illustrated in figure A1 for oriented
links, i.e. the parametrization of the loop gives it a sense of direction. It is a standard result
that ambient isotopy of linksL1 andL2 leads to:

lk[L1] = lk[L2]. (A2)

If one denotes the set of all crossings (including self-crossing) byC(K), the writhe is defined
as

w(K) =
∑

p∈C(K)
ε(p). (A3)

The expression defined by ‘pulling apart’ two loops also concerns crossings. However,
only those crossings where a designated loop passes above the other are considered. Signs are
still attributed as withε, which is also the role of the cross-product term in the definition oft.
The set of such crossings which is automatically determined by the operations definingt? will
be written asα u? β, such that,

t
?(α, β) =

∑
p∈αu?β

|ε(p)|. (A4)

Definition A1. Equation (A4) is simply the total number of crossings occurring during an
extraction. Furthermore,

t(α, β) =
∑

p∈αu?β
ε(p). (A5)

Definition A2. Expression (A5) can be viewed as alternative definition of the previously
introduced quantities†. The analogue to the writhe could also be defined in terms of the
‘action of separation’ as taking each part of the link path separately and moving it along the
vectorx̂ and by counting appropriately.

Proposition A1. Given any linkL with parametrizable component link paths, the quantities
δ?(t?[L]) andδ?(t[L]) are invariants of ambient isotopy.

† Clearly,α u? β = β u? α is not true.
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Figure A2. A type II crossing with reference to proposition 4.2.

Proof. The functionδ? tests whether the argument contained is odd or even, returning a
value of either zero or one, respectively. The normalization in the measure of the analytical
expression fort? ensures that it has either the values zero or one at each instance of crossing
by extraction. For thet it is clear from the definition that an instance of crossing by extraction,
say{s, s ′, τ } ∈ α u? β, ε(p) = |ε(p)| = 0 always if the sign of the crossing is zero. Then the
sums formingt andt? must have the same nature, i.e. evenness or oddness.

Say that the knot is changed locally only by a type II move. This always entails either two
crossings, not of value zero, or no crossings by extraction at all (depending on which strand
lies above the other relative to the direction of extraction). Any change in the sums comprising
botht andt? must therefore be±2 or 0.

Say that the knot is changed locally by a move of type III. Only two-links are being
investigated, and consequently, the strands must be labelled, such that either one or two
are extracted, and self-crossings ignored (as the whole of one member of the link is being
translated). Again it is clear that any changes can only be even in number. �

Testing for even or odd, nonetheless, does not do the definitiont(α, β) any justice, as it
does contain more detail. If a type II crossing were being considered the sign of the crossing
by extraction on the left of figure A2 would have a value +1, and the other would be assigned
−1. The sum of these two then results in a difference ofzero. The following proposition
formalizes the idea.

Proposition A2. Given any linkL with parametrizable component link paths,t[L] is an
invariant of ambient isotopy.

Proof. The theorem is proved by making use of the fact that the change int under moves of
type II and of type III is zero.

There are two crossings by extraction in any Reidemeister II knot alteration. The lines
can be straightened according to Jordan’s theorem, such that in a 2D graph, the upper (as
regards direction of extraction) forms a straight line on thex-axis. Along they-axis follows
the line continuous, differentiable line with non-zero derivatives at pointsa andb. These are
the only two crossings of thex-axis by definition of the Reidemeister moves and operative
crossings. Hence, from fundamental analysis the derivatives at a and b exist and are of opposite
sign. These signs correspond to the extraction crossing signs and prove the first part of the
proposition.

The proof for type III moves simply entails the remark that theslidingof a crossing does
not change its sign. �

Proposition A3. For any two-component linkL = {α, β} where(α u? β) ∩ (β u? α) = ∅ the
expressiont(α, β) + t(β, α) is even and equals twice the linking number.

Proof.

t(α, β) + t(β, α) =
∑

p∈αu?β
ε(p) +

∑
p∈βu?α

ε(p)
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=
∑

p∈(αu?β)∪(βu?α)
ε(p)

=
∑
p∈αuβ

ε(p)

= 2 lk(α, β) (A6)

lk(α, β) ∈ Z. �

Corollary A1. For any two-component link,t(α, β) is odd (even) ifft(β, α) is odd (even).

This simple observation will provide a basis for the definition of collective coordinates in
a statistical mechanical system, subjected to invariance of the form modulo two. It is also
remarked here the operation of ‘switching’ the two loops in a two-component link by changing
the set under investigationα u? β ↔ β u? α is also equivalent to a transformationx̂↔ −x̂ in
addition to changing the labels inside the definition of the analytically defined invariant.

By now enhancing the definition of the setα u? β, such that the hitherto usedα u? β is
denoted by,αu?+β, but that the projections underneath, i.e. by moving the first knot downwards
are written asαu?− β. This is simply a change in the integration overτ in equation (1.3). From
this additional definition and equation (1.4), as well as the property that bringing a ring from
infinity and pulling it through the other to negative infinity must have a total of zero (line 2),
the following deduction ensues:

t+(α, β) = t−(β, α)
t+(α, β)− t+(β, α) = 0

t(α, β) = +t(β, α)

(A7)

establishing the close association of this formalism with that of the linking number. Later this
will be confirmed directly when, upon integration, the functional form of the implemented
invariants is identical. However, it is re-emphasised thatt(α, β) cannot be defined sensibly for
a self-knot.

Appendix B. Collective coordinates

It is useful to transform the coordinates which arise naturally from the modulo two entanglement
invariance formulation into collective coordinates as given in equation (2.7). The RPA for these
as free noninteracting rings is computed in this appendix.

B.1. Definitions

The parametrized delta function of the transformation gives,∫ {∏
DriD Eφi

}
exp

[
− 3

2`

∑
i

∫
ds ṙ2

i (s) + i
∑
ik

Eφi(k) · E9i(k)

−i
∑
ik

Eφi(k) ·
∑
j

∫
ds ṙj (s)e

+ik·rj (s)
]

'
∫ {∏

D Eφi
}

× exp

{
− 1

2
N

〈 ∫ ∫
ds ds ′

∑
kii ′

Eφi(k) · ṙ(s)ṙ(s ′) · Eφi ′(−k)eik·(r(s)−r(s ′))
〉
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+i
∑
ik

Eφi(k) · E9i(k)
}

(B1)

in order to express the new Gaussian distribution,P E9 as,

P E9 [ E91(k), E92(k)] = exp

(
−1

2
Tr ln

1

2π
Aij
)

× exp

(
− 1

2V

∑
ij

∑
k

E9i(k) · A−1
ij (k) · E9j(k)

)
. (B2)

Here the angular brackets denote the average over the free system in the Wiener measure for
a polymer.

The definitions below are introduced:

Aij (k) =
(
A1(k) 0

0 A2(k)

)
(B3)

A1(k) = M

V
A(k) (B4)

A2(k) = N −M
V

A(k) (B5)

A(k) =
〈 ∫ L

0

∫ L

0
ds ds ′ ṙ(s)ṙ(s ′)e+ik·(r(s)−r(s ′))

〉
. (B6)

The average may be performed in terms of bond vectors, which are constrained to form a
closed molecule, as performed by Brereton and Vilgis [32], or, as is done here in terms of the
Rouse modes relevant to such a molecule, in which no additional delta functions are required.
Integrating over these variables will be of particular use later for systems with localized polymer
paths.

The value ofA then follows, by using a generating function, taking derivatives, and by
writing the polymer variable,r, in terms of equation (2.3):

G[J(s),k] = N
∫ ∏

m

drm exp

{−3L

2`

∑
m

(
2πm

L

)2

rm · r−m

+ik ·
∑
m

rm(e
2π ims/L − e2π ims ′/L) + i

∑
m

∫ L

0
ds J(s) · rm

(
2πm

L

)
e2π ims/L

}
.

(B7)

Then the well-established procedure leads to the appropriate function. It is noted here that the
use of a random walk without stiffness constraints leads to complications at points on the walk
where|s − s ′| becomes small. Where these complications occur it is helpful to revert to the
expression for the bond-vector density as derived for a finite number of bond vectors, and in
particular to the contribution inkk.

A(k) =
∫ L

0

∫ L

0
ds ds ′

[
∂2

∂J(s)∂J(s ′)
G[J,k]

G[0, 0]

]
J=0

. (B8)

Taking the derivatives with respect to the arguments of the generating function and setting their
values as zero results in the expression forA,

A =
∫ ∫

ds ds ′
{
`2

9
kk
(s − s ′)
L

[
1− |s − s

′|
L

]
+
`

3L
1[Lδ(s − s ′)− 1]

}
× exp

[
−`Lk

2

6

( |s − s ′|
L
− (s − s

′)2

L2

)]
. (B9)
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This has the correct symmetries of the ring.
The result consequently has the form,

A(k) = f (k)1 + g(k)k̂k̂ (B10)

which is easily inverted in the Cartesian space:

A−1(k) = f −1(k)1 +
f −1(k)g(k)

f (k) + g(k)
k̂k̂. (B11)

B.2. Simplification and approximation

The arguments and integrals overs ands ′ nevertheless make the expression as it stands rather
complicated in an analytical treatment. Furthermore, the discussion in the main text refers to
the additional ring constraint which removes the dependence on components of the collective
variables,E9, perpendicular to the vectork. It is then feasible to approximate the result using
the dominant contribution (this has been successfully used elsewhere; see e.g. [31].), which
provides the trueA without the term inkk, as is required. A bond-vector approach to this
average produces a function which is odd aroundL/2 in the interval [0, L]:

A(k) =
∫ L

0

∫ L

0
ds ds ′ 〈ṙ(s)ṙ(s ′)eik·(r(s)−r(s ′))〉

=
∫ L

0

∫ L

0
ds ds ′ 1

(
`

3L

)
(Lδ(s − s ′)− 1)

×e−`k
2(|s−s ′|− |s−s′ |2

L
)/6 + irrelevant termskk (B12)

'
∫ L

0

∫ L

0
ds ds ′ 〈ṙṙ〉〈e+ik·(r−r′)〉. (B13)

The dominant contribution, (B13), is (B12) without the unnecessary terms. This differs from
the usual integrals which give rise to the Debye function due to the quadratic dependence
on arc-difference in the exponent of equation (B9), the form which follows from the ring
condition, containing the symmetry of the separations established by|s − s ′| ↔ L− |s − s ′|.

By separating the scalar contribution to

A = 1A = δabf
(
k2`L

6

)
(B14)

equation (B12) may be transformed into the form,

3L

`
A(k) = L2 − 2L2e−k

2`L/24
∫ 1/2

0
dy exp

(
+
k2`L

6
y2

)
. (B15)

This integral provides difficulties for further analysis unless it is simplified. A similar situation
occurs in the calculation of the structure factor of free chains which gives rise to the Debye
function. This (Debye) function is frequently approximated by a rational function which
satisfies the limiting behaviour of the Debye function. The approximation is accurate to within
15% everywhere over the range [6].

The limiting behaviour for small and large wavevector, where the definition

κ2 = k2`L

6
= k2R2

g (B16)

is made can be determined from (B12). Forκ2/4� 1 one finds that

3L

`

(
A− L2 `

3L

)
= −2L2

(
1

2
− κ

2

12
+ · · ·

)
(B17)
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and in the opposite extreme which is obtained when the rings are regarded as very long the
expression

A ' `

3L

(
L2 − 2L2

κ2

)
(B18)

may be derived directly from equation (B15). Approximate corrections to the latter equation
follow from a redefinition of integration variables which give the integral whose upper bound
(for largeκ) may be approximated by infinity enabling the development of a series of gamma
functions.

3L

`
(−L2 `

3L
+A) = −2L2

κ2

∫ κ2/4

0
dg (1− 4gκ−2)−1/2e−g

' −2L2

κ2

∫ ∞
0

dg

(
1 +

2g

κ2
+ · · ·

)
e−g (B19)

= −2L2

κ2
− 4L2

κ4
+ · · · . (B20)

In determining the integrals over the wavevector of expressions such as above, it frequently
becomes important to consider the case where the polymer is of finite stiffness or even wormlike
for derivatives of the polymer path of its arc-length to exist. Finite loop stiffness has been
modelled by a cut-off length, or by softened interactions, or may be resolved by renormalization
techniques.

Appendix C. Fourier space integrals

It is necessary to perform the sum or integration over the Fourier components of the logarithm
of the function which emerges from the determinants in the main text.

I = −
∑
k>0

ln

[
1 +

π2M(N −M)
V 2

(
4`L

3

)2 1

k2
f 2

(
k2`L

6

)]

= − V
π2

∫ ∞
0

dk k2 ln

(
1 +%2 6

k2`L
f 2

(
k2`L

6

))
. (C1)

Here it is assumed that 1� %2 � 6k2
c /`L which is the largek cut-off. This cut-off has

to since the fact that there is only a finite number of linear bonds in the ring thus restricting
the maximal crossing number. The integral is performed by transforming to a new variable

x = k
√
`L
6 , andf is given by,

f (x) = 1− 2e−x
2/4
∫ 1

2

0
dye+x2y2

. (C2)

In order to perform the integral above it is important to understand the asymptotic behaviour
of the integrand. Elsewhere it has been derived that

f 2(x)

x2
∼
{
x2/36 +O(x4) smallx
x−2 + 4x−4 +O(x−6) largex.

(C3)

Integration by parts then leads to,

I = x3

3
ln[1 + c2%2f 2x−2]xc0 −

∫ 2

0
dx
x3

3

%2 ∂
∂x

f 2

x2

1 +%2f 2x−2
−
∫ xc

2
dx
x3

3

%2 ∂
∂x

f 2

x2

1 +%2f 2x−2

= a0 + a1 + a2. (C4)
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Consequently, one has

a0 = x3

3
ln

(
1 +ρ2f

2(x)

x2

) ∣∣∣∣xc
0

' %2

3

{
xc +

8 +%2

2xc
+O(%4/x3

c )

}
. (C5)

It has been assumed here that1
2 � ρ2 � x2

c . However, as% ∼ xc it is found that the terms
above gives a contribution proportional to1

3x
3
c ln 2.

So it is found that,

a1 =
∫ 2

0
dx
x3

3

%2∂/∂x(f 2(x)x−2)

1 +%2f 2(x)x−2
∼ O(%−1) (C6)

which is a small correction for high densities. The integral for largek gives up to the highest
orders in% and the cut-off:∫ xc

2
dx
x3

3

%2∂/∂xf 2(x)x−2

1 +%2x−2f 2(x)
' −%2xc/6 +%2/12− %3π/12. (C7)

This is the result as presented in the main text. An alternative approach to performing the
integration lies in identifying the divergent contribution, subtracting it in the integrand and
estimating the non-divergent correction toI .
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